

Adam Flint, Director of Clean Energy Programs Hailley Delisle, Campaign Director, Heat Smart Southern Tier

A Program of

Register today at NYNEST.ORG

- Thursday, October 29, 12:00-12:50pm Geothermal Home Case Study with Dailey Electric
- Thursday, November 12, 12:00–12:50pm Air Source Heat Pumps: Technology and Incentives w/Airsource LLC
- Wednesday, November 18, 7:00-7:50pm Clean Heating & Cooling with Heat Pumps & Energy Efficiency
- Thursday, December 3, 12-12:50pm Clean Heat Beneath your Feet with Dailey Geothermal
- Wednesday, December 9, 12-12:50pm Energy Efficiency Virtual Home Tour (Binghamton) with The Insulation Man
- Wednesday, January 13, 2021, 7-7:50pm Clean Heating & Cooling with Heat Pumps & Energy Efficiency
- Thursday, January 21, 2021, 12–12:50pm Air Source Heat Pump Virtual Home Tour (Oxford)

NEST's HeatSmart Southern Tier (HSST) Virtual Webinar Series Schedule

The Network for a Sustainable Tomorrow is a non-profit community-based network of programs working towards social, environmental, and economic justice and equity in our region. NEST catalyzes and convenes new initiatives and partnerships, and does outreach and education to build a stronger and more resilient Southern Tier.

Overview

- What is Heat Smart Southern Tier?
- Why HeatSmart?
- Dailey Electric and Geothermal
- Case study
- Incentives & financing
- How to participate
- Q&A

What is HeatSmart Southern Tier?

- HeatSmart Southern Tier (HSST) is a NYSERDA-funded community outreach program that connects you to local heating and cooling and energy efficiency experts who offer the latest clean energy technologies.
- We work to educate the public about sustainable heating and cooling systems through our workshops, webinars and tabling events.

Benefits of Heat Smart Southern Tier

- Reduce energy costs
- Home comfort & safety
- Greenhouse gas emissions
- Community awareness

Where Are We Now?

Heat Smart Southern Tier Program Covers:

• Weatherization

- Heat Pumps
 - Ground Source
 - Air Source
 - Water Heater

HeatSmart Southern Tier's Competitively Selected Partners

Air Source Heat Pumps

Ground Source Heat Pumps

Home Performance and Efficiency

D & D Refrigeration (Delaware county)

Dailey Electric and Geothermal

What is a heat pump?

Types of Heat Pumps

Space Heating & Cooling

Hot Water Heating

Ground Source Heat Pump

Air Source Heat Pump

Heat pump Water Heater

Types of Ground Source Heat Pumps

Closed Loop

Horizontal

Vertical

Ground Source Heat Pump Benefits

- An efficient heating/cooling system
- Long system lifetime
- Eliminate fossil fuels from your home
- Can include domestic hot water

Monger Geothermal Case Study

Dailey Electric, Inc.

Entire House Dailey Electric, Inc. Job: Bruce Monger Date: Dec 13, 2019 By: Ryan Dalley

0

140 Sheppard St, Penn Yan, NY 14527 Phone. 315-531-8108 Fax: 315-536-6480 Email: daileyelectricino@gmail.com Web: www.daileyelectricino.com

Project Information

For: Bruce Monger

420 Ridge Rd, Lansing, NY 14882

Design Information							
	Htg	Clg	Ir	filtration			
Outside db (°F) Inside db (°F) Design TD (°F)	3 68 65	87 75 12	Method Construction quality Fireplaces	Simplified Average			
Daily range Inside humidity (%) Moisture difference (gr/lb)	50 47	M 50 22					

HEATING EQUIPMENT			COOLING EQUIPMENT			
Make Trade Model AHRI ref			Make Trade Cond Coil AHRI ref			
Efficiency Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure Space thermostat	80 AFUE 0 0 826 0.019 0	Btuh Btuh °F cfm cfm/Btuh in H2O	Efficiency Sensible cooling Latent cooling Total cooling Actual air flow Air flow factor Static pressure Load sensible heat ratio	0 0 828 0.042	Btuh Btuh Btuh cfm cfm/Btuh in H2O	

ROOM NAME	Area	Htg load	Clg load	Htg AVF	Clg AVF
	(ft²)	(Btuh)	(Btuh)	(cfm)	(cfm)
Room1	240	7183	3927	138	165
Room2	784	17808	7954	342	335
Room3	240	5459	2021	105	85
Room4	144	4215	1843	81	78
Room5	225	8313	3849	160	162
Entire House Other equip loads Equip. @ 0.92 RSM Latent cooling	1633	42977 0	19594 0 17928 1675	826	826
TOTALS	1633	42977	19604	826	826

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

wrightsoft Right-Suite® Universal 2019 19.0.15 REU22150

2020-Jun-16 18:35:28 Page 1

Manual J Heat Loss 42,977 Heat Loss 19,504 Cooling Gain

Vertical loop bore hole 500'

Loop installation prior to grouting

Hiding of loop pipe Custom cover b homeowne

Active second second

Old LP fired hot water boiler with Indirect hot water tank

Phoenix Control box Symphony Monitoring

WF 5 series NEW Optiheat unit with 2 ton NSW for domestic hot water

Piping to existing hot water baseboards

MultiAqua console unit and high wall unit

Payback Comparison Vs. Fossil Fuel

					-	System:
						System.
						Economics Detail
						System and Installation Cost: Incentive / Rebate:
						Net System Price: Expected Fuel Inflation Rate:
						Operating Cost Rest
						Annual Fuel Cost w/o Inflation:
						Equivalent CO2 (Avg US) [lbs]
						Equivalent CO2 [Trees/Cars]
						Installation Costs vs. Fossil Fu
						First Year Operating Savings v Fossil Furnace
_				_	- 10.00	Simple Payback vs. Fossil Furr
						Investment Analysis
						Net Investment Amount:
						Net Investment Amount: vs. Fo Furnace
_					_	Annual Fuel Savings: vs. Fossi Furnace
						Return on Investment: vs. Foss Furnace
						Internal Rate of Return: vs. For Furnace
						Lifecycle Cost of Ow
						System Service Life
Htg Cost	Clg Cost	HW Cost	Fan Cost	Total Cost		Replacement Cost %
						Replacement Loan Rate %
WaterFuri	nace 5 Series -	/apor Injection	NEW066			20 year Total Lifecycle Costs

16 SEER/Dual Stage-R410A with Boiler-90%/Propane/SparkCondens

2800 2600

2400

2200

2000

1600 (\$) supplied 1400

1200

1000

800 600

400 -

0

Investment Econom

20 year Total Lifecycle Costs vs.

Fossil Furnace

System:	Geo System 1 Best system	Fossil Furnace Base system
	5 Series - Vapor Injection NEW066	16 SEER/Dual Stage-R410A with Boiler-90%/Propane/SparkCondens
Economics Detail		
System and Installation Cost:	\$51,275	\$18,000
Incentive / Rebate:	\$27,682	\$3,000
Net System Price:	\$23,593	\$15,000
Expected Fuel Inflation Rate:	5.00%	5.00%
Operating Cost Results		
Annual Fuel Cost w/o Inflation:	\$715	\$2,661
Equivalent CO2 (Avg US) [lbs]	9,689	17,482
Equivalent CO2 [Trees/Cars]	24.2 / 0.7	43.7 / 1.3
Installation Costs vs. Fossil Furnace	\$8,593	
First Year Operating Savings vs. Fossil Furnace	\$1,946	
Simple Payback vs. Fossil Furnace	4.41 years	
Investment Analysis		
Net Investment Amount:	\$23,593	
Net Investment Amount: vs. Fossil Furnace	\$8,593	
Annual Fuel Savings: vs. Fossil Furnace	\$1,946	
Return on Investment: vs. Fossil Furnace	649%	
Internal Rate of Return: vs. Fossil Furnace	27.55%	
Lifecycle Cost of Owners	hip	
System Service Life	20 yrs	15 yrs
Replacement Cost %	50 %	100 %
Replacement Loan Rate %	10 %	10 %
20 year Total Lifecycle Costs	\$47,227	\$113,417

(\$66,190)

Ground Source System 1 Performance Summary

5 Series - Vapor Injection NEW066 with Vertical 1 U-Bend - 1.25" PE WaterFurnace System - Heating -

waterrumace system -		
WaterFurnace Series:	5 Serie	s - Vapor Injection
WaterFurnace Unit:	5 Series	NEW066
Geo Unit Cooling Run Time:	181	hours
Geo Unit Heating Run Time:	1,131	hours
Hot Water Generation Option:	NSW02	5 HPWH
Max System Balance Point:	0.0	°F
Avg. System Balance Point:	0.0	°F
Summer Peak Demand:	2.5	kW
Winter Peak Demand:	4.6	RW
Auxiliary Heat -		
Auxiliary Heat Type:		- internal duct heat
Fumace Fuel:		Electric
Auxiliary Heat Required:	0	kW
Optional Emergency Heat Size:	1072	kW
GeoThermal Loop System -		
Loop Type:	venical	1 U-Bend 1.25" PE
C-117	0000	
Soil Type:	5.0	y - Damp ft
Average Depth:		
Trench/Bore:	2690	n
Freeze Protection Minimum:	21.0	÷Ε
Max Geo Extreme Temp:	66.5	°F
Average Clg Loop Temp:	56.6	۰F
Average Hilg Loop Temp:	41.6	*F
Min Geo Extreme Temp:	32.3	°F
Geo Temp Min-Max:	32.0 - 75.0	.eE
Deep Earth Temp:	50.0	۴F
Surface Swing:	24.3	°F
Ground Lag Time:	38	Days
Soil Conductivity:	0.75	
Soil Diffusivity:	0.6	
Design Data -		
Design Heating Load:	42,977	Btuh
Design Heating Temp Difference:	68.0	*F
Radiant/Fan Coll/Radiator Option:	Radiator 14	0 *F ELT
Design Cooling Load:	19,604	Bluh
Design Cooling Temperature Difference:	17.0	°F
Hot Water Temperature Setting:	120	*F
Hot Water Users:	3	
Continuous Fan:	No	
Internal Gains:	7,110	Bluh
Comfort Conditions -		
Heating Set Point:	70	۰F
Cooling Set Point:	75	"F
Start Cooling Temperature:	75	۴F

Weather Location:

10	-Bend - 1.25" PE		
	Heating -		
	5 Series - Vapor Injection Unit:		
	Annual Load:	76.1	million Btu
	Electrical Use:	6,210	kWh
	Average Efficiency:	3.59	COP
	% of heating load:	100	%
	Annual Cost of Operation:	\$559	
	Auxiliary Heat: Electric - Internal duo	t heat:	
	Electricial Use:	0	kWh
	Average Efficiency:	0	%
	% of Heating Load:	0	%
	Annual Cost of Operation:	\$0	
	Total Heating Cost:	\$559	
	Cooling -		
	5 Series - Vapor Injection Unit:		
	Annual Load:	9.0	million Btu
	Electrical Use:	753	kWh
	Average Efficiency:	11.93	EER
	Total Cooling Operating Cost:	\$68	
	Hot Water -		
	N SW025 HPWH		
	Annual Load:	14.6	million Btu
	Electrical Use:	979	kWh
	Average Efficiency:	4.38	COP
	% of HW Load:	100	%
	Total Hot Water Operating Cost:	\$88	
	Total Annual Cost:	\$715	

Energy Consumption Per Year

Due to variability in system installation, weather, and individual units, this analysis is to be considered an estimate.

SYRACUSE.NY

Economics, Incentives, and Financing

NYSEG & RGE Incentives (Residential)

Technology		Description	Eligibility Requirements
Cold Climate	Partial Load Heating Rebate	\$500 per outdoor unit (- <i>\$100 per outdoor unit to contractor</i>)	All ASHPs must be NEEP-listed Cold Climate Air Source Heat Pumps
Air Source Heat Pump	Full Load Heating Rebate	\$1,000 per 10,000 Btu/h of maximum capacity at 5°F (- <i>\$500 per project to contractor</i>)	Partial Load: Must be mini-split heat pump Full Load: Can be central or mini-split heat pump, must be sized to 90-120% of building heat load
Ground Source Heat Pump	Full Load Heating Rebate	\$1,500 per 10,000 Btu/h of heating capacity (certified by AHRI) (-\$500 per project to contractor)	GSHP must be ENERGY STAR certified and meet ENERGY STAR Tier 3 requirements and be sized to 90- 120% of building heat load. This incentive only covers closed-loop systems. Speak with your installer for more information about incentives for open-loop systems.
	Heat Pump Water Heater	\$700 per unit	Must be ENERGY STAR certified and under 120 gallons in capacity
Water Heating	GSHP Desuperheater	\$100 per unit	Desuperheaters are installed as an optional component to eligible GSHP systems to offset some of your hot water load. Speak with your installer to learn more about desuperheater integration.
	Ground-Source Water Heater	\$900 per unit	This incentive is for ground source heat pump systems dedicated to providing 100% of domestic hot water load. The GSHP must be ENERGY STAR Tier 3 Certified.

**Custom incentives and incentives for commercial-scale systems are also available based on the expected annual energy savings (\$80/MMBtu). Speak with your installer to learn more.

Heat Pump Tax Credits

	Air Source Heat Pump	Ground Source Heat Pump	Heat Pump Water Heater
Federal Tax Credit		26%	\$300 until Dec 31, 2020

Financing

Provider Loan Product Name		Description
NYSERDA*	Smart Energy Loan	Up to \$25,000; terms of 5, 10, and 15 years; 3.49 <u>or </u> 6.99% interest
NYSERDA	On-Bill Recovery Loan	Up to \$25,000; terms of 5, 10, and 15 years; 3.49 <u>or</u> 6.99% interest; paid on utility bill
ASHP/GSHP Manufacturer Financir (E.g. Synchrony, EnerBank)	າg	Unsecured loans with dealer fees (can be terms of up to 20 years)
Local Banks (e.g. Home Equity, con	sumer loans)	Dependent on bank
Property Assessed Clean Energy (PA Commercial/Non-profit only	ACE) -	Repaid through property tax and tied to the property; Up to 100% of cost, 4%-5.75%, terms of 5-20 years

Enabling LMI Participation: Income-eligible programs

Assisted Home Performance with Energy Star Energy Efficiency/Weatherization

Provides those who apply with a discount of **50% of project costs**

- Limit of **\$5,000** for single-family
- Limit of **\$10,000** for 2-4 unit multi-family
- Eligibility expanded up to 120% AM through Dec. 31
- Includes heat pumps as of Nov 5

Household Size	Income Limit
1	\$58,856
2	\$78,288
3	\$96,720
4	\$115,128
5	\$133,560
6	\$151,968

(Income levels subject to change)

Enabling LMI participation: Income-eligible programs

EmPower NY Energy Efficiency/Weatherization

- Available to homeowners that are under 60% of state median (HEAP/low-income utility rate code eligible) that pay utility bills
- FREE assessment and efficiency improvements
- Max award increased to \$10k until Dec 31.
- Includes heat pumps as of Nov 5

Household Size	Income Limit
1	\$29,928
2	\$39,144
3	\$48,360
4	\$57,564
5	\$66,780
6	\$75,984

(Income levels subject to change)

What's the Process For Participating?

- 1. Sign up for a home energy assessment (and/or)
- 2. Sign up for site assessment from HSST installer(s)
- 3. Receive a quote for energy improvements
- 4. Sign contract for desired systems (if any)
- 5. Apply for incentives/financing (if applicable)
- 6. Complete installation work

Like us on Social Media Facebook: Network for a Sustainable Tomorrow Instagram: @ny_Nest Twitter: @ny_Nest

> (607) 873-9220 NYnest.org info@NYnest.org